Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters

Language
Document Type
Year range
1.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.05.23.445114

ABSTRACT

Since December 2019, the coronavirus disease 2019 (COVID-19), caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has spread throughout the world. To eradicate it, it is crucial to acquire a strong and long-lasting anti-SARS-CoV-2 immunity, by either natural infection or vaccination. We collected blood samples 12-305 days after positive polymerase chain reactions (PCRs) from 35 recovered individuals infected by SARS-CoV-2. Peripheral blood mononuclear cells were stimulated with SARS-CoV-2-derived peptide pools, such as the Spike (S), Nucleocapsid (N), and Membrane (M) proteins, and we quantified anti-S immunoglobulins in plasma. After 10 months post-infection, we observed a sustained SARS-CoV-2-specific CD4+ T-cell response directed against M-protein, but responses against S- or N-proteins were lost over time. Besides, we demonstrated that A-group individuals presented significantly higher frequencies of specific CD4+ T-cell responses against Pep-M than O-group individuals. The A-group subjects also needed longer to clear the virus and they lost cellular immune responses over time, compared to the O-group individuals, who showed a persistent specific immune response against SARS-CoV-2. Therefore, the S-specific immune response was lost over time, and individual factors determine the sustainability of the body's defences, which must be considered in the future design of vaccines to achieve continuous anti-SARS-CoV-2 immunity.


Subject(s)
Coronavirus Infections , COVID-19
2.
ssrn; 2021.
Preprint in English | PREPRINT-SSRN | ID: ppzbmed-10.2139.ssrn.3844997

ABSTRACT

The rapid development and deployment of mRNA-based vaccines against the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) led to the design of accelerated vaccination schedules that have been extremely effective in naïve individuals. While a two-dose immunization regimen with the BNT162b2 vaccine has been demonstrated to provide a 95% efficacy in naïve individuals, the effects of the second vaccine dose in individuals who have previously recovered from natural SARS-CoV-2 infection has not been investigated in detail. Here we characterized, SARS-CoV-2 spike-specific humoral and cellular immunity in naïve and previously infected individuals during and after two-doses of BNT162b2 vaccination. Our results demonstrate that, while the second dose increases both the humoral and cellular immunity in naïve individuals, COVID-19 recovered individuals reach their peak of immunity after the first dose. These results suggests that a second dose, according to the current standard regimen of vaccination, may be not necessary in individuals previously infected with SARS-CoV-2.Funding: Research reported in this publication was supported in part by National Cancer Institute of the NIH (5R01HD102614-02; R01CA249204 and R01CA248984) and ISMMS seed fund to EG. The authors gratefully acknowledge use of the services and facilities of the Tisch Cancer Institute supported by the NCI Cancer Center Support Grant (P30 CA196521). MS was supported by a NCI training grant (T32CA078207). This work was supported by ISMMS seed fund to JO; Instituto de Salud Carlos III, COV20-00668 to RCR; Instituto de Salud Carlos III, Spanish Ministry of Science and Innovation (COVID-19 Research Call COV20/00181) co-financed by European Development Regional Fund “A way to achieve Europe” to EP; Instituto de Salud Carlos III, Spain (COV20/00170); Government of Cantabria, Spain (2020UIC22-PUB 0019) to MLH; Instituto de Salud Carlos III (PI16CIII/00012) to PP; Fondo Social Europeo e Iniciativa de Empleo Juvenil YEI (Grant PEJ2018-004557-A) to MPE; REDInREN 016/009/009 ISCIII; This project has received funding from the European Union’s Horizon 2020 research and innovation programme VACCELERATE under grant agreement No [101037867] to JO.Conflict of Interest: AB declares the filling of a patent application relating to the use of peptide pools in whole blood for detection of SARS-CoV-2 T cells (pending). The other authors declare no competing interests.Ethical Approval: The study protocols for the collection of clinical specimens from individuals with and without SARS-CoV-2 infection were reviewed and approved by Hospital La Paz, Hospital 12 de Octubre, Hospital Gregorio Marañón, IIS-Fundación Jimenez Díaz, Hospital Universitario Marqués de Valdecilla-IDIVAL and Hospital Puerta de Hierro Clinical Research Ethics Committee (CEIm), and Mount Sinai Hospital Institutional Review Board (IRB).


Subject(s)
Coronavirus Infections , Severe Acute Respiratory Syndrome , Multiple Sclerosis , Cross Infection , Neoplasms , COVID-19
3.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.03.22.436441

ABSTRACT

The rapid development and deployment of mRNA-based vaccines against the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) led to the design of accelerated vaccination schedules that have been extremely effective in naive individuals. While a two-dose immunization regimen with the BNT162b2 vaccine has been demonstrated to provide a 95% efficacy in naive individuals, the effects of the second vaccine dose in individuals who have previously recovered from natural SARS-CoV-2 infection has been questioned. Here we characterized SARS-CoV-2 spike-specific humoral and cellular immunity in naive and previously infected individuals during full BNT162b2 vaccination. Our results demonstrate that the second dose increases both the humoral and cellular immunity in naive individuals. On the contrary, the second BNT162b2 vaccine dose results in a reduction of cellular immunity in COVID-19 recovered individuals, which suggests that a second dose, according to the current standard regimen of vaccination, may be not necessary in individuals previously infected with SARS-CoV-2.


Subject(s)
COVID-19 , Coronavirus Infections
SELECTION OF CITATIONS
SEARCH DETAIL